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We present a characterization for a best uniform approximation to a given
bounded continuous function f defined on the real but not nece~sarily compact
interval T from an n-dimensional subspace S of the bounded continuous func­
tions on T. When S is a Haar subspace and each element of S satisfies an addi­
tional endpoint regularity condition, such a best approximation may be charac­
terized by an appropriate generalization of the familiar alternation criterion
which holds for compact T. One such best approximation that has an alter­
nating error curve may be obtained as the uniform limit of a sequence whose
vth term is the unique best uniform approximation to f on the vth member of a
suitably chosen expanding sequence of compact subintervals of T. The results
apply in the special case where T = [0, + oc,) and S is a family of exponential
sums with real exponents.

1. INTRODUCTION

Let Cb(T) denote the space of bounded continuous real valued functions
defined on the nondegenerate real interval T with the uniform norm

Ilfll = sup{1 !(t)1 : tEn. (1)

and let S be an n-dimensional subspace of Cb(T). Well known arguments (cf. 2.
p. 20]) show that there is some yES which best approximates a givenfE Cb(T)
on T with respect to the norm (1). In this paper we formulate a necessary and
sufficient condition for y to be such a best approximation. We then specialize
this result to the case where S is a Haar subspace (i.e., if h E S and II II II ~ 0
then h has at most n - 1 distinct zeros in T) which is regular in the sense
that for every hE Sthe two limits lim h(tt), lim h(tr) exist as t l • t r approach the
left, right endpoints of T, respectively.
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In particular, we obtain a simple alternation type characterization which
applies in the important special case where T = [0, 00) and

s = {y: [(D - '\) ... (D - An)]Y = O}

where D = djdt is the differential operator and

Al ~ '" ~ A n - l < 0, A n _ l ~ An ~ O.

(2)

(3)

Since the exponents A, are real no h E S with II h Ii =1= 0 has more than n - I
distinct zeros (cf. [8, p. 40 # 18]), and because of the constraints (3) every
h E S has real limits at t = 0, +00.

When the interval T is compact and S is a Haar subspace of Cb(T), this
alternation type characterization implies the unicity ofthe best approximation
(cf. [2, p. 80]). When the interval of approximation T is not compact, one
often loses unicity and the alternation characterization does not apply even
when S is a Haar subspace of T. We illustrate this situation (and provide
some motivation for the following discussion) by means of the following two
examples.

EXAMPLE 1. Let T = (-1, I), let ul(t) = 1 - t2, u2(t) = t, and let
f(t) = 1. When we approximatefusing Y = (XlUl + (X2U2 the resulting error
function €(t) = 1 - (Xl(l - t2) - (X2t has the minimum sup norm II € II = 1
if and only if (X2 = 0 and 0 ~ (Xl ~ 2. There is no best error curve which
alternates at least twice on T although the error curve corresponding to
(Xl = 2, (X2 = 0 does alternate twice on the natural compactification, [-1, 1],
of T. I

EXAMPLE 2. Let T = [0, 00), let ul(t) = 1, U2(t) = e-t , and let
f(t) = (l - e-t) sin t. Clearly Y = (XlUl + (X2U2 is a best approximation
only if (Xl = 0 and Ilf - y II = 1 so that I ();2 I ~ 1, and all such choices of
yare best. Although no best approximation alternates even once on T, we see
that every optimum error curve € oscillates infinitely often between values
arbitrarily close to ± Ii € II. I

The alternation concept can be extended to noncompact intervals as
follows.

DEFINITION. We say that € E Cb(T) essentially alternates at least n times
on Tprovided that for each 0 > 0 there exist n + 1 points to < tl < ... < tn

from T and some S E {-I, + I} such that

S' (-I)i. €(t,) > II € II - 0, i = 0,1,... , n.

When T is compact and € essentially alternates at least n times on T, then
€ must also alternate at least n times on T.
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2. CHARACTERIZATION
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The following theorem provides a general characterization for a best
approximation (which may be used even when S is not finite dimensional.)

THEOREM 1. Let f E Cb(T), let S be a linear subspace of Cb(T), let YES,
and let E = f - y. Than y is a best approximation to f from S with respect to
the norm (1) if and only if

where

<P(E, h) ;:::;: 0 for all hE S (4)

<P(E,h) = lim sup{h(t) sgn E(t) : t E T and I E(t)1 > II Ell - o} (5)

with the limit being taken as 0 approaches zero through positive values.

Proof When II Ell> 0 the same arguments used to establish Lemma 3
in [2] can be used to show that for any h E S we have

Ii E+ rxh Ii = II Ell + rx<P(E, h) + o(rx) (6)

as rx decreases to zero through positive values. This being the case (4) must
hold if y is a best approximation (since (6) shows that if <P(E, h) < 0 for some
h E S then for all sufficiently small rx > 0 the function y - rxh is a better
approximation to f than y.)

On the other hand if y fails to be a best approximation, then we can find
some h E S such that y - h is a better approximation so that the constant

d = II Ell - II E+ h II

is positive. For 0 < ex :S;; 1 we have

liE + rxh II = 11(1 - rx) E+ rx(E + h)11

:'( (1 - rx) II Ell + rx II E + h II
= IIEII-ad

which when used in conjunction with (6) shows that <P(E, h) < 0 so that
(4) fails. I

Theorem 1 reduces to the real version of Kolomogoroff's characterization
[7, p. 15] when T is compact. An alternative characteriation which also
applies when T is not compact can be formulated in terms of the dual space
of Cb(T), cf. [6, p. 120].

By imposing suitable restrictive hypotheses on f and S we may specialize
such general characterizations to forms which are somewhat easier to use in
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practice. For example, Bram [1] treats the case where S is finite dimensional
and where troublesome endpoint conditions are avoided by the assumption
that {t E T: Ig(t)1 ;? S} is compact whenever S > 0 and g E S U {f}. Using
Theorem 1 we formulate a simple characterization which applies when S is
a finite dimensional Haar space of functions having definite limits at the
endpoints of T.

THEOREM 2. Let S be an n dimensional Haar subspace of Cb(T) and assume
that for each hE S the limits lim hUI), lim hUr) exist as t z , tr approach the
left, right endpoints of T, respectively. Let f E Cb(T), let YES, and let E =

f - y. Then Y is a best approximation to f from S with respect to the norm (1)
if and only if at least one of the following three conditions holds.

(i) The error curve E essentially alternates at least n times on T.

(ii) As t approaches some one of the endpoints of T we have
lim sup I dt)1 = II E II while lim I h(t)1 = 0 for every h E S.

(iii) As tz , t r approach the left, right endpoints of T, respectively,

while 1im( _l)n . h(t l ) . hUr) ~ 0 for every h E S.

Proof If (i) holds and h E S then since S is a Haar subspace we have

sup{hU) sgn E(t) : t E T and I E(t)! ;? II Ell - 8} ;? 0

whenever 8 > 0 is sufficiently small, and in the limit 8 ---+ 0+ we find that
epeE, h) ;? 0, i.e., (4) holds. Likewise (ii), (iii) each imply (4). Together with
Theorem 1 this shows that anyone of (i), (ii), (iii) is sufficient to insure that y
is optimal.

To show necessity we assume that none of (i), (ii), (iii) holds and show that
y fails to be optimal by inferring the existence of some hE S for which
ep(E, h) < O. In so doing we assume with no loss of generality that the interval
T is open and that !I E II > O. Since (i) fails there exists some 8 > 0, some
s E {-I, +1}, and some interval partition T = T1 U ... u TI;, of T with
1 ~ k ~ n (where t, < t j whenever ti E Ti , tJ E T j , and 1 ~ i < j ~ k)
such that

sup{s . (_I)i-1 . EU) : t E T,} = II Ell, i = I, , k (7)

sup{s' (-l)i . E(t) : t E T,} ~ II E II - 8, i = I, , k. (8)

The constructions used to prove Theorems 4.2, 5.1, and 5.2 in [5] can be
extended from the case where S is a Haar space on a compact interval to the
present case where S is a Haar space of bounded continuous functions on
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the open interval T. This being the case there is some hoE S such
that sgn ho(t) = s . (-I)i whenever t is in the interior of Ti , i = 1'00" k
and such that

sup{ho(t) sgn E(t): t E K and [ E(t)1 = 1/ Ell} < 0 whenever KC Tis compact. (9)

It follows that C/J(E, ho) ::s:; 0 with the inequality being strict so that Yo fails
to be optimal except in the case where lim sup I E(t)1 = II EII while lim ho(t) = 0
as t approaches some one of the endpoints of T.

To complete the proof we will show that in this exceptional case we may
slightly perturb the above function ho to obtain some h E S for which
C/J(E, h) < O. In the process we assume that limits involving the variables t z ,

t r are always taken as t l , t r approach the left, right endpoints of T, respec­
tively.

Suppose first that this anomalous limiting behavior occurs only at one of
the endpoints of T. For definiteness, we assume that lim sup I E(tz) I < !; E II
while lim sup [ E(tr) I = II E II and lim ho(tr) = O. Since (ii) fails we can find
hr E S such that lim hr(tr) = s . (-I)k and then choose (Xr > 0 so small
that (9) holds when we replace ho by h = ho + (Xrhr. By construction
C/J(E, h) < O. The same argument holds if we replace the assumption that
lim sup I E(tz)[ < II E II by the assumption that lim sup I E(tz)1 = II Ell
provided that lim hO(tl) =1= 0 so that we can also require (Xr to be so small that
(Xr lim Ihr(tl) < lim Iho(tl)l.

Finally, we deal with the case where the anomalous limiting behavior
simultaneously occurs at both endpoints so that

lim sup I E(tl)! = lim sup I E(tr) [ = II Ell (10)

while lim ho(tz) = lim ho(tr) = O. Since (ii) fails we can find hi, hr E S such
that

(11)

If it is possible to choose such hi , hr so that the vectors

(12)

are linearly independent, then (after replacing hi, hr by suitable linear
combinations of hi' hr , if necessary) we can also arrange to have

so that we again have C/J(E, h) < 0 whenever h = ho + (Xrhr + (Xlhl and (Xz.
(Xr > 0 are sufficiently small.
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If it is impossible to choose hI , hr so that the vectors (12) are independent,
then both lim hr(tl) and lim hr(tr) are nonzero with

lim hr(tl) . lim h(tr) = lim hr(tr) . lim h(tl) whenever hE S. (13)

Moreover, we may assume that hr has exactly n - I zeros in T so that

(-I)"-lJim hr(tl) lim hltr) > O. (4)

Indeed, if this is not already the case we replace hr with ('J.(hr + f3h.) where
h. ES has exactly n - I distinct zeros in T, where f3 is so large in magnitude
that hr + f3h. also has n - I zeros in T and lim[hrCtr) + f3h.(tr)] =1= 0, and
where the scale factor ('J. is then adjusted so as to preserve the requirement that
the new hr satisfy (11). Together (13), (14) imply that

(-I)" lim h(tl) lim h(tr) ~ 0 whenever h ES,

and since (10) holds and yet (iii) fails we have

(15)

From (7), (8), and (15) we conclude that (-1)7. = (-I)n so that

sgn lim hr(tl) = (-l)"-lJimsgnhr(tr) = (-I)k-lJimsgnho(tr)

= lim sgn hO(tI) = -so

This being the case, if we set h = ho + ('J.rhr we have <P(E, h) < 0 whenever
('J.r > 0 is sufficiently small. I

The two examples given in the introduction serve to illustrate the various
situations which are covered by conditions (i), (ii), and (iii) of the theorem.
In addition, we present the following two corollaries (which may be proved
by an immediate application of the above theorem.)

COROLLARY 1. Let f E Cb[O, + (0), let S be the n dimensional subspace of
exponential sums given by (2) and (3), let YES, and let E = f - y.

(a) If An = 0 (so that the constant functions are included in S) then y is
a best uniform approximation to f on [0, + (0) if and only if E essentially
alternates at least n times on [0, + (0).

(b) If An < 0 (so that every h E S vanishes at + (0) then y is such a best
approximation if and only if either E essentially alternates at least n times on
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[0, +(0) or else lim sup Ij(t)1 = II E II as t -+ +00. Moreover, if An < 0
and limj(t) = 0 as t -+ + 00 then y is such a best approximation if and
only if E alternates at least n times on [0, + ro).

Note. An extension of this result which applies in the case where the
exponents Ai are also allowed to vary is given in [4].

COROLLARY 2. Let f E Cb( - 00, + (0), let S be the n dimensional subspace
of functions of the form pet) . exp(-t2) where P is a polynomial of degree
n - 1 or less, let YES, and let E = f - y. Then y is a best uniform approxima­
tion to f on (- ro, + ro) if and only if either E essentially alternates at least
n times on (- 00, + (0) or lim sup Ij(t)1 = II E II as t -+ - ro or as t -+ + ro.
Iflimj(t) = 0 as t -+ ± 00, then y is such a best approximation ifand only if E

alternates at least n times on ( - ro. + ro).

3. CONSTRUCTION

When T is compact it is possible to use one of the Remez exchange
algorithms (cf. [7, p. 105-116]) to numerically determine the unique best
uniform approximation to a given fE C(T) on T from the n dimensional
Haar subspace S of C(T). In the sense made clear by the following theorem
this (at least in principle) enables us to construct a best uniform approxima­
tion to f on T even when T is not compact.

THEOREM 3. Let S be an n dimensional Haar subspace of Cb(T) and let
fE Cb(T). Let K 1 C K2 C··· be an expanding sequence of nondegenerate com­
pact intervals with union T, and for each v = 1, 2,... let Yv be the unique best
uniform approximation to f on Kv . Then some subsequence of {Yv} converges
uniformly on T to a best uniform approximation, y, to f on T from S with the
corresponding error curve E = f - y essentially alter!t&ting at least n times
on T.

Proof The sequence {Yv} is uniformly bounded on K1 and since S is a
finite dimensional subspace of Cb(T) we may assume (after passing to a
subsequence, if necessary) that {Yv} uniformly converges on K1 and thus on all
of T to some yES. Given any 8 > 0 we can therefore find some index v

such that

II Yv - y Ii < 8/3

Ilf - y II < I[f - y k + 8/3

(16)

(17)

where IlllK
v

denotes the sup seminorm on Kv • Since )'V IS a best uni-
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form approximation to I from S on K v , there exist points to < t1 < ... < tn

from Kv and S E {-I, +I} such that

S • (- 1)' . [J(ti) - yit;)] = II f - Yv IIKv'

Using (16)-(18) we now have

i = 0, 1,... , n. (18)

S . (-l)i [J(ti) - yeti)] = Ilf - Yv I~Kv + S • (-l)i . [yv(t,) - y(ti)]

~ Ilf - Y IIKv - 21! Yv - y II

> III - Y Ii - 0, i = 0, 1,... , n,

and since 0 > °is arbitrary the error function E = I - y must essentially
alternate at least n times on T. The argument used in the proof of Theorem 2
shows that this is sufficient to insure that y is a best uniform approximation
tolon Tfrom S. I
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